Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 208: 105444, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36243175

RESUMO

Infections by pathogenic New World mammarenaviruses (NWM)s, including Junín virus (JUNV), can result in a severe life-threatening viral hemorrhagic fever syndrome. In the absence of FDA-licensed vaccines or antivirals, these viruses are considered high priority pathogens. The mammarenavirus envelope glycoprotein complex (GPC) mediates pH-dependent fusion between viral and cellular membranes, which is essential to viral entry and may be vulnerable to small-molecule inhibitors that disrupt this process. ARN-75039 is a potent fusion inhibitor of a broad spectrum of pseudotyped and native mammarenaviruses in cell culture and Tacaribe virus infection in mice. In the present study, we evaluated ARN-75039 against pathogenic JUNV in the rigorous guinea pig infection model. The compound was well-tolerated and had favorable pharmacokinetics supporting once-per-day oral dosing in guinea pigs. Importantly, significant protection against JUNV challenge was observed even when ARN-75039 was withheld until 6 days after the viral challenge when clinical signs of disease are starting to develop. We also show that ARN-75039 combination treatment with favipiravir, a viral polymerase inhibitor, results in synergistic activity in vitro and improves survival outcomes in JUNV-challenged guinea pigs. Our findings support the continued development of ARN-75039 as an attractive therapeutic candidate for treating mammarenaviral hemorrhagic fevers, including those associated with NWM infection.


Assuntos
Arenaviridae , Febre Hemorrágica Americana , Febres Hemorrágicas Virais , Vírus Junin , Cobaias , Camundongos , Animais , Febre Hemorrágica Americana/tratamento farmacológico , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Amidas/farmacologia , Amidas/uso terapêutico , Antirretrovirais/farmacologia
2.
J Virol ; 95(14): e0039721, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33952638

RESUMO

Live-attenuated virus vaccines are highly effective in preventing viral disease but carry intrinsic risks of residual virulence and reversion to pathogenicity. The classically derived Candid#1 virus protects seasonal field workers in Argentina against zoonotic infection by Junín virus (JUNV) but is not approved in the United States, in part due to the potential for reversion at the attenuating locus, a phenylalanine-to-isoleucine substitution at position 427 in the GP2 subunit of the GPC envelope glycoprotein. Previously, we demonstrated facile reversion of recombinant Candid#1 (rCan) in cell culture and identified an epistatic interaction between the attenuating I427 and a secondary K33S mutation in the stable signal peptide (SSP) subunit of GPC that imposes an evolutionary barrier to reversion. The magnitude of this genetic barrier is manifest in our repeated failures to rescue the hypothetical revertant virus. In this study, we show that K33S rCan is safe and attenuated in guinea pigs and capable of eliciting potent virus-neutralizing antibodies. Immunized animals are fully protected against lethal challenge with virulent JUNV. In addition, we employed a more permissive model of infection in neonatal mice to investigate genetic reversion. RNA sequence analysis of the recovered virus identified revertant viruses in pups inoculated with the parental rCan virus and none in mice receiving K33S rCan (P < 0.0001). Taken together, our findings support the further development of K33S rCan as a safe second-generation JUNV vaccine. IMPORTANCE Our most successful vaccines comprise weakened strains of virus that initiate a limited and benign infection in immunized persons. The live-attenuated Candid#1 strain of Junín virus (JUNV) was developed to protect field workers in Argentina from rodent-borne hemorrhagic fever but is not licensed in the United States, in part due to the likelihood of genetic reversion to virulence. A single-amino-acid change in the GPC envelope glycoprotein of the virus is responsible for attenuation, and a single nucleotide change may regenerate the pathogenic virus. Here, we take advantage of a unique genetic interaction between GPC subunits to design a mutant Candid#1 virus that establishes an evolutionary barrier to reversion. The mutant virus (K33S rCan) is fully attenuated and protects immunized guinea pigs against lethal JUNV infection. We find no instances of reversion in mice inoculated with K33S rCan. This work supports the further development of K33S rCan as a second-generation JUNV vaccine.


Assuntos
Febre Hemorrágica Americana/prevenção & controle , Vírus Junin/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Cobaias , Febre Hemorrágica Americana/imunologia , Imunogenicidade da Vacina , Vírus Junin/genética , Vírus Junin/patogenicidade , Masculino , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Células Vero , Vacinas Virais/genética , Virulência
3.
Antiviral Res ; 156: 38-45, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29864447

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula. There are no approved antiviral therapies or vaccines available to treat or prevent severe disease associated with RVFV infection in humans. The adenosine analog, galidesivir (BCX4430), is a broad-spectrum antiviral drug candidate with in vitro antiviral potency (EC50 of less than 50 µM) in more than 20 different viruses across eight different virus families. Here we report on the activity of galidesivir in the hamster model of peracute RVFV infection. Intramuscular and intraperitoneal treatments effectively limited systemic RVFV (strain ZH501) infection as demonstrated by significantly improved survival outcomes and the absence of infectious virus in the spleen and the majority of the serum, brain, and liver samples collected from infected animals. Our findings support the further development of galidesivir as an antiviral therapy for use in treating severe RVFV infection, and possibly other related phleboviral diseases.


Assuntos
Antivirais/administração & dosagem , Nucleosídeos de Purina/administração & dosagem , Febre do Vale de Rift/tratamento farmacológico , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Adenina/análogos & derivados , Adenosina/análogos & derivados , Animais , Modelos Animais de Doenças , Injeções Intramusculares , Injeções Intraperitoneais , Fígado/virologia , Mesocricetus , Pirrolidinas , Baço/virologia , Análise de Sobrevida , Resultado do Tratamento
4.
Antiviral Res ; 145: 131-135, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28780425

RESUMO

A collection of Old and New World arenaviruses are etiologic agents of viral hemorrhagic fever, a syndrome that features hematologic abnormalities, vascular leak, hypovolemia, and multi-organ failure. Treatment is limited to ribavirin for Lassa fever and immune plasma for Argentine hemorrhagic fever. Improved therapeutic options that are safe, more effective and widely available are needed. Here, we show that modification of favipiravir treatment to include a high-dose loading period achieves complete protection in a guinea pig model of Argentine hemorrhagic fever when treatment was initiated two days following challenge with Junin virus (JUNV). This loading dose strategy also protected 50% of animals from lethal disease when treatment was delayed until 5 days post-infection and extended the survival time in those that succumbed. Consistent with the survival data, dramatic reductions in serum and tissue virus loads were observed in animals treated with favipiravir. This is the first report demonstrating complete protection against uniformly lethal JUNV infection in guinea pigs by administration of a small molecule antiviral drug.


Assuntos
Amidas/administração & dosagem , Antivirais/administração & dosagem , Febre Hemorrágica Americana/tratamento farmacológico , Vírus Junin/efeitos dos fármacos , Pirazinas/administração & dosagem , Amidas/uso terapêutico , Animais , Antivirais/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Cobaias , Febre Hemorrágica Americana/sangue , Febre Hemorrágica Americana/mortalidade , Pirazinas/uso terapêutico , Análise de Sobrevida , Carga Viral/efeitos dos fármacos
5.
Antiviral Res ; 126: 62-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26711718

RESUMO

Favipiravir is approved in Japan to treat novel or re-emerging influenza viruses, and is active against a broad spectrum of RNA viruses, including Ebola. Ribavirin is the only other licensed drug with activity against multiple RNA viruses. Recent studies show that ribavirin and favipiravir act synergistically to inhibit bunyavirus infections in cultured cells and laboratory mice, likely due to their different mechanisms of action. Convalescent immune globulin is the only approved treatment for Argentine hemorrhagic fever caused by the rodent-borne Junin arenavirus. We previously reported that favipiravir is highly effective in a number of small animal models of Argentine hemorrhagic fever. We now report that addition of low dose of ribavirin synergistically potentiates the activity of favipiravir against Junin virus infection of guinea pigs and another arenavirus, Pichinde virus infection of hamsters. This suggests that the efficacy of favipiravir against hemorrhagic fever viruses can be further enhanced through the addition of low-dose ribavirin.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Febres Hemorrágicas Virais/tratamento farmacológico , Pirazinas/farmacologia , Vírus de RNA/efeitos dos fármacos , Ribavirina/farmacologia , Animais , Arenavirus/efeitos dos fármacos , Chlorocebus aethiops , Cricetinae , Vírus da Dengue/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Cobaias , Orthohantavírus/efeitos dos fármacos , Vírus da Febre Hemorrágica da Crimeia-Congo/efeitos dos fármacos , Febre Hemorrágica Americana/tratamento farmacológico , Doença pelo Vírus Ebola/tratamento farmacológico , Febres Hemorrágicas Virais/sangue , Febres Hemorrágicas Virais/veterinária , Febres Hemorrágicas Virais/virologia , Vírus Junin/efeitos dos fármacos , Masculino , Mesocricetus , Camundongos , Células Vero
6.
Front Microbiol ; 6: 651, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26175722

RESUMO

Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus) causes a range of illnesses that include retinitis, fulminant hepatitis, neurologic disease, and hemorrhagic fever. In hospitalized individuals, case fatality rates can be as high as 10-20%. There are no vaccines or antivirals approved for human use to prevent or treat severe RVFV infections. We previously tested the efficacy of the MP-12 vaccine strain and related variants with NSs truncations as a post-exposure prophylaxis in mice infected with wild-type pathogenic RVFV strain ZH501. Post-exposure efficacy of the rMP12-C13type, a recombinant MP-12 vaccine virus which encodes an in-frame truncation removing 69% of the NSs protein, resulted in 30% survival when administering the virus within 30 min of subcutaneous ZH501 challenge in mice, while the parental MP-12 virus conferred no protection by post-exposure vaccination. Here, we demonstrate uniform protection of hamsters by post-exposure vaccination with rMP12-C13type administered 6 h post-ZH501 infection while no efficacy was observed with the parental MP-12 virus. Notably, both the MP-12 and rMP12-C13type viruses were highly effective (100% protection) when administered 21 days prior to challenge. In a subsequent study delaying vaccination until 8, 12, and 24 h post-RVFV exposure, we observed 80, 70, and 30% survival, respectively. Our findings indicate that the rapid protective innate immune response elicited by rMP12-C13type may be due to the truncated NSs protein, suggesting that the resulting functional inactivation of NSs plays an important role in the observed post-exposure efficacy. Taken together, the data demonstrate that post-exposure vaccination with rMP12-C13type is effective in limiting ZH501 replication and associated disease in standard pre-exposure vaccination and post-challenge treatment models of RVFV infection, and suggest an extended post-exposure prophylaxis window beyond that initially observed in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...